Thursday, March 26, 2015

About the problem of evil

The Auschwitz concentration camp
In a previous article on the hunting hymenoptera I mentioned the problem of evil, often called the problem of pain, the well-known title of a book by CS Lewis. Although this question is mainly ethical or philosophical, it also has some relationship with science, as will be seen at the end of this post.
We can consider two different types of the problem of evil:
  1. Human evil, caused by man. The Auschwitz concentration camp has become its most mentioned paradigm.
  2. Natural pain, the fact that natural processes can cause severe pain to humans and other living beings.

Thursday, March 19, 2015

Are we about to become immortal?

Arthur C. Clarke
In 1965 Arthur C. Clarke published a short story, titled Dial F for Frankenstein, later published in the collection The wind from the sun: stories of the space age. In that story Clarke proposed the following scenario:
When all global telephone systems are connected via geostationary satellites, the number of components of the global system will exceed those in the human brain. As such a system will have access to the information in all the computers connected to the network, we’ll have a very complex system with an extremely high amount of information. If conscience arises automatically from such a system, the computer network, connected by telephone, should be conscious and, being far superior to any human brain, will take control of the Earth.

Thursday, March 12, 2015

What is life?

Saccharomyces cerevisiae
After a century discussing about the origin of life, we are not closer to knowing what did happen. In the mid-twentieth century, when Stanley Lloyd Miller performed the famous experiment where he applied energy to a mixture of methane, hydrogen, ammonia and water, and obtained amino acids, scientists announced the imminent manufacture of artificial life in the laboratory. Such estimates are often too optimistic. In this case they were.
The first question to be solved here is what is meant by being alive. If we consider the problem carefully, we’ll find beings that are clearly alive and others that definitely are not. Plants, animals and ourselves are alive. Stones, distilled water, carbon dioxide, are not. In these cases deciding is no trouble. When Antony van Leeuwenhoek discovered microorganisms (yeast, infusorians, bacteria, spermatozoa and red blood cells) nobody doubted that they are alive. But things are not always so simple.

Thursday, March 5, 2015

The scientific work of Stephen Hawking

The scientific work of Stephen Hawking has been quite productive, although the media, influenced by his sad personal situation, tend to exaggerate its importance, putting him sometimes at the level of Einstein. His most renowned works are the following:
  • The singularity theorems, published in 1970 in collaboration with Roger Penrose, proved that the application of the equations of Einstein’s General Relativity to the entire universe requires at least one singular point in that universe (a point where all the geodesics in the universe converge). As a consequence of this theorem, in the book The Large Scale Structure of Space-Time (1973, written with George Ellis), Hawking unequivocally embraced the theory that the universe began at a point of infinite density (the Big Bang).

Sunday, March 1, 2015

Interview with Manuel Alfonseca

This is the translation of an interview about my activity as an author of fiction, published in El Templo de las Mil Puertas


1.         What drives an apparently scientific person to get involved on the wonderful task of creating, writing and sharing stories?
Many scientists have written novels, especially in the genre of science fiction. To name a few: Carl Sagan, Leo Szilard, George Gamow and Willy Ley. I also like to try other genres. Throughout my life, I've been interested in many subjects that are not supposed to be science, such as history or philosophy. Later, when I tried to express myself in the field of fiction, such knowledge found its natural place.

Thursday, February 26, 2015

Natural selection is more complicated than we thought

Jacques Monod
In his famous popular book Le hasard et la nécessité (1970), Jacques Monod said that evolution is the result of the interaction of two types of phenomena: chance (mutations, environmental changes) and necessity (natural selection) .
More precisely, natural selection can be considered as the action of a random element (the environment) over another random element (the genetic make-up of living beings). According to the synthetic theory of evolution, who is now over 80 years old, that action is quasi-deterministic (Monod’s nécessité).
A further development of the synthetic theory of evolution is Richard Dawkins’s selfish gene theory, which asserts that adult living beings are just the means that allow genes to perpetuate. Although it had some significant detractors (Stephen Jay Gould, for instance), this theory was accepted by many biologists in the two decades after its statement.
However, in recent years, advances in genomics and evolutionary biology are beginning to question the accuracy of the synthetic theory of evolution and the selfish gene. Make no mistake: this does not mean that the theory of evolution is in question, what is being discovered is the fact that things are not as simple as they seemed. The following is a sample of some of the problems detected, culled from the book The year in evolutionary biology, Annals of the New York Academy of Sciences (2008).
·         Epigenesis: genes are more interconnected than thought. A mutation in a gene can make another gene work in a completely different manner, complicating the action of natural selection.
·         Quasi-neutrality: slightly deleterious mutations seem to be immune to natural selection and are perpetuated over generations.
·       
The tree of life
 
The development and hybridization of viviparous beings (which include such different organisms as mammals and flowering plants, among others) are not as simple as implied by the Dobzhansky-Muller principle, associated with the synthetic theory of evolution. Hitherto unsuspected effects take a part, such as genomic imprinting (substantial differences in the expression of maternal and paternal genes during development).
·         The fundamental dogma of the synthetic theory (the genotype uniquely determines the phenotype) is now questionable. Not only it is true (what was already known) that the genotype is plastic, and depending on the environment can lead to several different phenotypes (to see this, just compare the different types of cells of the same organism, which are very different, although they share the same genome). What is unexpected is the finding that several different genotypes may result in the same phenotype; a setback for Dawkins’s selfish gene theory. The relationship between genotype (genes) and phenotype (the physical aspect of the living adults) happens to be many-to-many in both directions, and the development of the phenotype from the genotype is more deeply influenced by the environment than previously thought.

The same post in Spanish
Thematic thread on Evolution: Preceding Next
Manuel Alfonseca

Thursday, February 19, 2015

Science is a tool

Francis Bacon
The utopia The New Atlantis, written by Francis Bacon, a contemporary of Galileo and pioneer of modern philosophy of science, describes a perfect society that would automatically arise from the practice of science, which the inhabitants of the island of Bensalem have made the basis of their society and its government. Like many of his encyclopedic followers, who a century later created the myth of indefinite progress, Bacon believed that science in the future will save man and solve all human problems, opening the way to a paradise on Earth.
This mistake is common. Tools are often confused with their good uses, forgetting that the same tools can also be misused. Let’s look at a few examples, among the thousands that could be cited: