Showing posts with label heredity. Show all posts
Showing posts with label heredity. Show all posts

Thursday, April 16, 2015

The origin of sexual reproduction

Cromosomas X e Y
Sexual reproduction is the most common form of reproduction among eukaryotes, including multi-cellular living beings. After billions of years of asexual reproduction among prokaryotes, who share genetic information by exchanging plasmids (small DNA fragments), a new type of reproduction suddenly appeared. As it was successful, we must assume that it must have provided some advantage over the alternative procedure.
Sexual reproduction can be defined as the alternation between two life cycles for the same type of organism:
  • Haploid cycle: each cell has a single copy of every chromosome.
  • Diploid cycle: each cell has two copies of every chromosome.
In eukaryotes, the haploid cycle is always unicellular; the diploid cycle may be unicellular (in unicellular eukaryotes) or multi-cellular (in multi-cellular eukaryotes). The individuals in the haploid cycle are called gametes.
How was this alternation established? It could have been caused by an alternation between two different environments. Haploid and diploid cells do not have the same properties. For example, diploid cells are more voluminous, having many duplicate organelles, so that the ratio of surface to volume is usually larger than in haploid cells (about 1.25 times). As the absorption of nutrients by the cells depends on their surface, haploids tend to grow faster than diploids.

Thursday, April 9, 2015

Outstanding problems in the history of life

Gregor Mendel
In a previous article I wrote about the origin of life and related problems. That is only the first of the outstanding issues regarding evolution. There are many more, for we are far from having an explanation for everything that happened during the history of life.
The theory of evolution through natural selection was first proposed by Darwin and refined by his followers when new discovered biological phenomena solved some of the problems posed since the beginning of the theory:
1.      The laws of heredity (Mendel, 1865).
2.      Mutations (Hugo de Vries, 1900).
3.      The laws of genetics (Thomas Hunt Morgan, early twentieth century).
4.      The synthetic theory of evolution (Simpson, Dobzhansky and others, around 1930)
5.      The transmission of inheritance through DNA (Oswald Avery, 1944).
6.      The structure of DNA and the deciphering of the genetic code (Watson, Crick, Rosalind Franklin and others).
7.      The neutral theory of evolution (Motoo Kimura, 1968).
8.      Punctuated equilibrium (Stephen Jay Gould, 1972).
9.      Epigenetics (early twenty first century).
Rosalind Franklin