Albert Einstein |
In a
previous article I mentioned that Einstein introduced a third term in the right
side of his cosmological equation, to force this equation to have as
solution a stationary cosmos, that would not expand or contract. The
attempt was unsuccessful, for such a cosmos would have been in unstable
equilibrium, and the smallest variation would have pushed it to either expanding
or contracting. The term in question depends on a constant (L, the cosmological
constant), which we don’t really know what it is.
Einstein's cosmological equation |
For most of the twentieth century,
it was assumed that the value of the cosmological constant must be zero. In other
words, the third term of the Einstein equation would not exist, wouldn’t be necessary.
However, in 1998 it was discovered that the universe seems
to be expanding rapidly. At least, this seems to be indicated by
the study of supernovas in very distant galaxies, about one billion light-years
away from us. To explain this discovery, the cosmological constant term was
resurrected, but giving it a sign opposite to that proposed by Einstein, so that
rather
than the expansion being counteracted, it would be accelerated. This
proposal has become the standard cosmological model, in which the first term of
the equation, which represents the effect of the mass, currently counts as 31%,
while the third, that of the cosmological constant, counts as 69%. In this model,
the second is assumed to be zero. I leave apart the question that the mass term
does not match, so it has been necessary to assume that there is also a dark
matter, that we don’t know what it is.
Some cosmologists, however, do
not agree with the standard model and try to offer alternatives:
• A few think that dark energy is not
necessary, because the effect of apparent acceleration can be explained in
terms of the granularity of the cosmos (the fact that there are huge empty
spaces, together with others full of galaxies). According to Einstein’s
equation, empty spaces expand more quickly than those that contain a lot of
mass. This phenomenon is called backreaction,
but other cosmologists, faithful to the standard model, argue that the effect,
although true, is too small to explain the accelerated expansion. Since we
cannot experiment with real galaxies, all these studies are based on
simulations, which, having to work with a model of the entire universe, require
enormous computer resources.
• Another proposal asserts that
accelerated expansion is not something real, but the
result of an optical mirage. When very distant supernovae are
observed, their light has to cross intermediate regions with groups of galaxies
alternating with voids. This trip could lead to changes in the direction of the
light beam (gravitational lens effects) that, when reaching us, would cause
an optical illusion, giving the impression of an acceleration where there is none.
These effects are also studied through simulations, but they are not realistic,
for they must be simplified to reduce the computer resources, which also reduces
their reliability.
Gravitational lens |
And then we have the pending problem that the calculations of the Hubble constant made by two different procedures do not agree. But that is another story.
The same post in Spanish
Thematic thread on Standard Cosmology: Preceding Next
Manuel Alfonseca
No comments:
Post a Comment